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The formation of condensed oxide par t ic les  in combustion of metal droplets is discussed;  
it is a s sumed  that the charac te r i s t i c  diffusion t ime is much Iess  than the charac te r i s t i c  
t ime for  the heterogeneous reaction at the condensate part icle  sur faces ,  and the s t ruc ture  
of the react ion zone is discussed;  the size spectrum is derived for  the condensed oxide 
par t ic les .  It is found that condensation in the gas has little effect on the droplet combus-  
tion rate .  Heat needed to evaporate  the metal is produced direct ly at the surface of the 
drop and the ra te- l imi t ing  step in the combustion is the diffusion of oxidant to the surface .  

A ma jo r  feature of metal combustion is that the combustion products are  par t ic les  of condensed �9 
mater ia l .  The theory of metal combustion should include the theory of metal par t ic le  formation and give 
the s ize  spect rum.  The formation mechanism and the par t ic le  spect rum can be elucidated via the conden- 
sation kinetics and the s t ruc tu re  of the react ion zone. In construct ing a model for  metal droplet combus-  
tion [1] one extends the model fo r  combustion of a hydrocarbon fuel droplet,  which involves the concept of 
an infinitely narrow flame front,  which does not include the s t ruc ture  of the reaction zone. 

Research  on condensed oxide formation from metals is only in an ear ly  stage. One assumes  that the 
oxides of metals  such as aluminum and magnesium decompose a lmost  completely on evaporation since 
they a re  very  r e f r ac to ry  compounds, and can thus condense direct ly f rom the products by decomposition, 
i.e., f rom the vapors  of the metal and oxidant, without direct ly forming the oxide vapor.  This assumption 
was made in [2], and it involves represent ing the condensation of the oxide as a react ion that begins with 
the formation of aggregates  containing metal  and oxygen atoms,  which act  as nuclei, this continuing at the 
expense of the metal  and oxidant interact ion at the surface .  

The chemical condensation is accompanied by evaporation and oxide decomposition, the result  being 
an equilibrium with the two rates  equal. The oxide formation rate is dependent on deviation from equili-  
brium, which is defined, as for an ordinary condensation, by the supersaturat ion ~2 = (T e -  T) /Te ,  where T 
is the actual t empera ture  and Te is the tempera ture  corresponding to chemical equilibrium between the 
condensed mater ia l  and the gaseous products .  

When a metal droplet  burns,  one can use as the measu re  of deviation from equilibrium in the con- 
densation a quantity dependent on the rate of mixing by diffusion between the metal vapor  from the droplet 
and the oxidant f rom the outside. The more  quickly the reac tants  ea te r  the react ion zone, the g rea te r  the excess  
of condensation over  evaporation.  It is of in teres t  to consider  the case where the diffusion is so rapid that 
the condensation deviates as far  as possible f rom equilibrium, when the oxide formation rate will not be 
dependent on the supersaturat ion and is small  re la t ive to the diffusion ra tes .  This situation can occur  if 
the size of the hot metal droplets is sufficiently small ,  in which case the diffusion fluxes, which a re  in- 
ve rse ly  proportional to the droplet diameter ,  become high; es t imates  show that this situation can occur  
for  a metal droplet of the size commonly employed in exper iments .  

The following is the picture of the burning pat tern.  The metal vapor  is oxidized in the surrounding 
gas,  but this has little effect on the metal  vapor  concentration and oxygen concentration near  the droplet; 
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the react ion zone in the gas extends far  away from the droplet,  and has little effect on the penetration of 
oxidizing gases to the metal surface .  The heat needed to evaporate the metal then is provided mainly by 
the oxidation direct ly at the droplet.  

The calculations then relate to the oxide formation in the gas zone. We do not consider  here  the 
format ion of oxide at the hot droplet,  but it is assumed that the oxide form there  does not constitute a 
continuous film and does not hinder evaporation and oxidation. 

Let  the condensation rate function be 

(P = kza~ao~ZpZ+Zs (1) 

where af and aox are  the relat ive volume concentrat ions of the droplet evaporation products and oxidant, 
respect ively ,  with p the gas densiiy and s the specific surface pe r  unit volume for  the condensate par t ic les .  

By analogy with the condensation rate we assume that the nucleation rate is also proportional to the 
condentrations of oxidant and droplet evaporation products raised to some power: 

dn / dt = k2at~aoSp p+q (2) 

where n is the number  of nuclei in unit volume. 

The oxidation of a metal is a reaction of addition type with a low activation energy,  so one assumes  
that the coefficients of proport ionali ty kl and k2 in (1) and (2) are  constant and independent of t empera ture .  

Consider a s tat ionary spherical  droplet of radius r0 in a medium of tempera ture  to containing an 
0 

oxidant concentration a0x. 

The problem may be simplified via various assumptions.  F i rs t ly ,  let the rate of formation of con- 
densed par t ic les  equal the rate represented  by the Stefan flux from the droplet surface.  Secondly, we 
assume that the rates  of consumption of oxidant and evaporation products in the nuclei a re  small relative 
to the condensation rate .  Condensation theory indicates that the nucleus size falls rapidly as the super -  
saturat ion inc reases ,  and the supersaturat ions  are  assumed high in the present  case,  so the nuclei are  
very  smal l .  Thirdly,  we assume that reactions (1) and (2) a re  of second order  (p = q = 1 = 1). 

We introduce the following dimensionless variables and pa ramete r s :  ~ = r / r0  the distance from the 
droplet surface,  52 = klPr02s 0/D the ratio of the charac te r i s t i cs  diffusion t ime to the charac te r i s t ic  he te ro -  
geneous reaction time for the nuclei, S = s/s0 the specific surface of the growing oxide par t ic les ,  and f l /~2  
ur0/D the speed of the Stefaa flux. If ~ = 1 (at the droplet surface),  the lat ter  quantity is equal to fl0=u0r0/D, 
where D is the diffusion coefficient,  u is the speed of the Stefan flux, and So= [4~(p/pc)2k2p/k~] 1/4 is  the 
cha rac te r i s t i c  value for  the specific surface of the condensate par t ic les .  

We assume that the thermal  diffusivities and diffusion coefficients are  equal for  all substances and 
independent of t empera tu re  and gas composition, in which case the dimensionless equations become as 
follows: the diffusion equation for  the droplet evaporation products:  

• (t3~ ~ d~t~ ~r - -  ~ 7 / =  - -  ~'a~2a'a~ (3) 

The equation for  the Stefan flux speed: 

d~ / d~ : --v52~2a]aoxS (4) 

In (3) we replace subscr ipt  f by subscr ipts  ox, p, and i to derive analogous equations for  the oxidant, 
decomposit ion products ,  and inert  gas.  In the equation for the decomposition products f rom the oxidant 
the right side should be positive, while in that for  the inert  gas it should be zero.  The pa ramete r s  vf, Vox , 
Vp, and v = yf + Vox- -  yp  introduced into the equations a re  the s toiehiometric  coefficients for  the he te ro-  
geneous react ion at the surface of the nuclei: vf[f] + Vox[OX ] = [c] + ,p[p], where [f], [ox], [e], [p] are  the 
droplet evaporation products,  the oxidant, the condensate, and the oxidant decomposition products o 

Consider the boundary conditions needed to solve (3) and (4); at the surface of an evaporating droplet 
with ~2 = 1 these conditions become 

a! ai ~ ao,, :O, (~a~ - d a ~  ( dap~_ ,pd%~ 
de / ~ O, ~ap -- -~--~ ] %~: d~ (5) 

This means f i rs t ly  that the concentration af ~ of the droplet evaporation products at the surface  c o r r e -  
sponds to the saturat ion vapor  concentration at t empera tu re  Ts;  secondly, there is a heterogeneous react ion 
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of very  high rate at the droplet surface;  and thirdly, the droplet surface is impermeable  to the decomposi-  
tion products f rom the oxidant and inert  gas.  

The boundary conditions in the surrounding medium for  ~ ~ co become 

aox =aox  ~ a I = 0 ,  ap = 0 ,  ai = ( t - - a o x  ~ (6) 

The right sides of (3) and (4) contain the unknown quantity S; to determine this we consider  the equa- 
tion for  the mass  change in a single condensate par t ic le  and the equation for  the nucleation rate in unit 
volume. We assume that the par t ic les  a r e  spherical  and that (1) and (2) apply to the condensation and 
nucleation ra tes ,  in which case the equations become: for the part icle  mass  change 

dg / d~ = (36n)v.pO~.~2a!aoxg~,'~ / p~'/.~s o (7) 

for  the nucleation rate:  

d~n / dE' = k2p2ro ~ (E')~a! (E') aox (E') / D (8) 

We integrate  (7) to find the par t ic le  d iameter  as a function of the coordinate ~, = r ' / r 0 ,  at which the 
nucleus is formed: 

2 P 8 ~ ~ ~ a t a o x  
r ~ j - - T d ~  (9) 

We multiply (8) by the a rea  of a par t ic le  having the d iameter  defined by (9) and integrate the express ion 
with respec t  to it to get 

0_ 
1 

s = -V l (o_ - o_'? ~ (0_3 dO_' 
o (10) 

0 = 6 ~ ~%a~ ~' 2 .) ~ dE, 0 ' = 6 0- ~ ~" a ja ~  d ~  
_ _ j - - - - f - -  1 1 

We substitute (10) into (4) and differentiate with respect  to 0_ to get (12) 

d4~ / dO 4 = --2v~ (11) 

We solve this equation subject  to the boundary conditions 0_ = 0, fl = rio, dfl/dO_ = 0, d2fl/dS_ 2 = 0, 
d3fl/dO_ ~ = 0 to get (12) 

= 130 cos [(v/2)v,0_] ch [(v / 2)',',0_] (12) 

This shows that the Stefan flux becomes  zero  at some point ~ * ,where 0_ = 0 _* = ( 2 / v ) l / 4 r / 2 .  

We then eliminate the r ight  sides f rom (3) and (4) and integrate the result ing express ion with respec t  
to ~ on the basis that the flux of droplet-evaporat ion products at infinity is zero,  which gives 

~ a l  __  E 2 da ,  "~1 
= ~ (~ - ~ )  (13 )  

where  fl~ is the Stefan flux at infinity. 

In the case of a metal  droplet burning in water  vapor  o r  carbon dioxide (Vp = V0x, v = vf) the volume 
flow ra te  of oxidant decomposit ion products (H2 or  CO) from the react ion zone equals the volume flow rate  
of the oxidant to the droplet,  hence rico = 0; if a droplet of metal in oxygen, rico is finite and negative. 

To determine how 0_ var ies  with ~, we use the following equation derived from (10) 

d O  / d~ ~ 52E~ataox / ~ (14) 

The boundary conditions for  (14) is ~= 1, 0_ = 0 by vir tue fo the definition of 0 given by (10). 

We subsequently suppose that the charac te r i s t i c  diffusion t ime r02/D is small  relat ive to the cha rac -  
te r i s t ic  heterogeneous react ion t ime at the surface of the nuclei 1/kips0, which corresponds  to 6 << 1; this 
will be so if 

ro 2 ~ D / kips o (15) 

If 5 << 1 near  a droplet,  and hence ~t6 << 1, we can neglect the right side in (14), and then the solution 
subject  to the boundary condition wflI be 0_ = 0; we substitute this solution into (13) and use the boundary 
condition ~ = 1, af = af ~ to get the distribution for  the dropIet evaporation product concentrat ion for  ~5 << 1: 
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at = [~t (1 - -  ~ / ~0) / v] + [at ~ - -  ~t (t - -  ~ / ~0) / vle-,%aJ~-~ ( 1 6 )  

At l a r g e  d i s t ances  f r o m  the  d rop le t ,  whe re  ~6 ~ 1, we in t roduce  the new v a r i a b l e s  

x = ~he [(v/2)V,vaoZ/Vl]'/, , z = a  I/[~0~ 
g_ = (v / 2)v,O_, e = I / ~* 5 [(v / 2)V,Vaox ~ / vi]'~'~ (17) 

w h e r e  [* is the coord ina te  a t  which  the Stefan flux b e c o m e s  z e r o .  Then s ince  a0x = a0x ~ + O (5), at  l a r g e  
d i s t ances ,  we neg lec t  quant i t ies  of the o r d e r  of 6 to get  

e,22dx ~ k/'c~ ,y_)Tch (V_)du_'~.d_7./= -- (cos (g_)ch (y_) -- ~'[~o, ) (18) 

Z ~ g 3 'VI ,- -- -7- [(v 12)VWaod / vl]':' cos (Y x2 ) ch (y_) d~_dx 

Al though at ~ = ~* the  value  of S is infinite,  and hence  a l so  is the r eac t ion ,  the  consumpt ion  of drople t  
evapo ra t i on  p roduc t s  in this zone r e m a i n s  finite,  so it is poss ib le  f o r  gaseous  evapora t ion  p roduc t s  f r o m  
the  d rop le t  to pene t r a t e  into the reg ion  [ < ~*. We repea t  the above  a r g u m e n t s  to get  equat ions analogous  
to ( 1 8 ) f o r  the c o n e e n t r a t i o n  d i s t r ibu t ion  in this reg ion:  

(oos oh ( . , )  dy+ 1 - (Cos (y+) Ch(y+) - -  t) 

Z = 8 3 Vf ~ o  - -  --6- [(v / 2)'"va~ cos O/,)x~Ch (v+) dV+dx (19) 

The  boundary  condi t ions  fo r  (18) and (19) a r e  put as 

x -  0, g = 0 ;  x--+oo,  g - + 0 ;  x = 1 ,  g_ = g +  = ~ / 2  
dr_ = ~ cos (g+)ch(g+) ~x + (20) ~0 cos (y_) c h (y_) 

The ta t te r  boundary condition shows that there  is no concentrat ion discontinuity at ~ = ~*, which can 
s e r v e  to d e t e r m i n e  the dependence of r (the coord ina te  of the point w h e r e  the Stefan flux b e c o m e s  zero)  
on fi~r which  i t se l f  is dependent  on the init ial  p a ram e te r s .  We add the diffusion equations in pai rs  in such 
a way  as  to e l imina te  the r ight  s ides  and solve the r e su l t ing  equat ions sub jec t  to the condit ion 6 << 1 with 

= 1 to get  

As  af,-~ 6, at  l a r g e  d i s t ances ,  we get  f rom (16) with an a c c u r a c y  up to quant i t ies  of ze ro  o r d e r  in 6 
that  

32,__~ v- 7v [ t - - ( t - -  % ~  ~ ] = t - -  ,-~/ao~~ -,~~ / (l  - -  e-~o) (22) 

To d e t e r m i n e  how r v a r i e s  with P~o and the concen t r a t ion  d i s t r ibu t ion  f a r  f r o m  the drop (t  ~ 1 / 6 ) ,  
we c o n s i d e r  (19)0 r e s t r i c t i n g  cons ide ra t ion  to the ease  r << 1, which is of the m a j o r  p r a c t i c a l  impor taneeo  
We see  f r o m  (19) that  in that  case  the values  of y+, z, and fi change only in a sma l l  r eg ion  a round  x = 1 
of width of the o r d e r  of r  0 a n d z  = 0 i n t h e  r e s t  of the reg ion  of the solut ion to (19). N e a r x = l  
we i n t roduce  the new coord ina te  X = ( x -  1)/r  and neglec t  quant i t ies  of the o r d e r  of  r to get  a solut ion to 
(19) as  

(~cos (y+) ch (y+) dr, -~-~] = cos (y+) sh (y+) -~- sin (y+) ch (g+) - -  y+ ,' 2 - -  
(23) 

- -  [sin (2y+) ~- sh (2g+)] / 4--[sh (2g+) cos (2g+) + ch (2g+) sin (2y+)] l 8 

Then  we use  the boundary  condit ions of (20) to get  f o r  x = 1 that  

cos (g_) ch (g_) dx -- ~08 ch -2- - -  ~ / 4 -  t nv2 

F i g u r e  ! and 2 show n u m e r i c a l  solut ions to (19) and (23); the f i r s t  shows the r e l a t ion  between e and 
( -  flc~/flo), which sa t i s f i e s  all the boundary  condit ions of (20) and (24). The Stefan flux b e c o m e s  z e r o  at 
a finite d i s tance  f r o m  the d rop le t  su r f a c e  such  that  e ~ 0 .3-0.4 ,  not only fo r  combus t ion  in w a t e r  vapor  and 
c a r b o n  dioxide but a l so  in oxygen.  The  second  f igure  shows how y_ (curve 1), fidy/fl0dx (curve 2), and 
fl/fio (curve  3) v a r y  with x fo r  combus t ion  in w a t e r  vapo r  o r  ca rbon  dioxide (fi~ = 0)~ 
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o ~  

As the Stefan flux becomes zero  at ~ = ~ *, the s teady-s ta te  par t ic le  
- f l~/ f lo  I distribution near  this point is reached in a t ime much la rger  than the 

/ charac te r i s t i c  droplet combustion t ime 2r02/~; inthat  sense,  the droplet 
combustion is not even quasistat iormry,  but Fig.  2 shows that in the 
present  case,  namely c << 1, the main consumption of evaporation products 
and the related formation of condensed oxide par t ic les  occurs  at distance 

~ 1/5 f rom the droplet,  while the variat ion in the number  and size of 
I the condensate par t ic les  near  ~ = ~* is negligibly smal l .  In view of this, 

the situation is nonstat ionary only on account of the motion of the oxide 
par t ic les ,  not because of format ion and growth. 

Consider the oxide format ion in the combustion of a metal droplet 
0z0 g35 050 of radius R; we assume that the rat io of r02/D to the charac te r i s t i c  d rop-  

Fig. 1 let s ize var ia t ion t ime 2r02/c~ will be less than 6 ~ if the law ro 2 = R 2 - a t  
applies,  and this condition gives 

ro a ~ o~D ~:~ / 2~0 (k,pso) '/~ (25) 

It can be shown that this res t r ic t ion  includes the res t r ic t ion  that 
the t ime of flight of an oxide par t ic le  formed near  the droplet surface 
out to a distance ~ ~ 1/5 is less than the charac te r i s t i c  drople t -s ize  
var ia t ion t ime. 

We assume that (25) is met  and find the par t ic le  s ize  distribution 
for  which purpose we differentiate (9) with respect  to ~' and divide (8) 
by the result ing express ion.  Then integration over  the entire combustion 
t ime �9 = R2/o~ gives 

dN 2 k.2:o 
i d q )  - -  "3 ~Ra p 2D f,r ~- /,-L ~ (~') , (26) 

g T: / g  This equation goes with (19) in pa rame t r i c  form (parameter  ~') to 
give the par t ic le  size distribution from a burning metal  droplet;  the 

Fig.  2 maximum oxide par t ic le  size in the gas *m is found by substituting 
tv = i and ~ = ~* into (9), which gives 

q~,,~ = ~ [(p / p~)2k~ / 2~vk~.pl'.', (27) 

The resul t  for the par t ic le  size spect rum does not constitute the complete spec t rum for  the droplet  

Z'/r % 

2 

Zg 

, J  
s s 

combustion products ,  since a considerable  fract ion of the oxide may be formed at the droplet surface,  and 
the condensate spect rum calculated for  the gas may be substantially modified by coagulation p rocesses ,  

which we do not consider  here .  

The function of (9), (26), and (27) allows one to determine the mass  of oxide formed in the gas by 
metal droplet combustion; we integrate the product  of the distribution and the mass  of the oxide par t ic les  

v~3Pc/6 with respec t  to size from 0 to ~m to get 

= ~- ~ (28) 

If there is condensed oxide on the hot metal droplet, the evaporation products a re  not necessar i ly  
metal vapor;  when aluminum burns,  for  example, it can be shown from thermodynamic  data [3] that the 
main equilibrium product  f rom evaporation of condensed metal  and oxide will be A120; oxide evaporation 
along with the metal f rom the droplet.  The oxide formation metal at the droplet surface appears to involve 
penetrat ion of oxidant, which enters into a heterogeneous react ion with the condensed metal in accordance 
with v m [In c] + V0x[oX] = [c] + Vp [Pl, where [m e] is the condensed metal .  

When the entire droplet has burned, the mass  of oxide is 4~rR3Pm/3Vm, where Pm is the density of 
the metal ,  so the proport ion of oxide formed in the gas phase (reckoned relat ive to the total mass  of oxide) 

is 
p 2D vm 

8 = Pm ~ ~ .([30 - -  t3~) (29)  

We give some numerical  evaluations for  the basis  fo r  the main assumptions made above; f i r s t  of all 
we check the assumption that the condensate evaporation rate  is small  relative to the formation rate ,  which 
can be put as ke << P0Zaf a0x, for  this second-order  reaction,  where ke is the constant of the equilibrium 
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be tween  the c o n c e n t r a t e  and  gaseous  p roduc t s .  F o r  A12 O + 02 = A1202 at  3000 ~ K we have k e = 3.66 �9 10 -8 
a t m  2, which  shows that  the above a s s u m p t i o n  is  c o r r e c t  for  al l  r e a l i s t i c  c o n c e n t r a t i o n s  (a0x ~ 1, af N 5). 

The  c o n d e n s a t i o n  o c c u r s  in  the p r e s e n c e  of excess  oxidant ,  so one supposes  that  the  condensa t ion  is  
p r o p o r t i o n a l  to the  n u m b e r  of co l l i s i ons  be tween  m o l e c u l e s  of the d rop le t  evapora t i on  p roduc t s  and  the 
s u r f a c e  of a c o n d e n s a t e  p a r t i c l e .  Then  the r a t e  cons t an t  for  the condensa t ion  is  kip = w v / 4 ,  w he r e  v is  
the t h e r m a l  ve loc i ty  of the gas m o l e c u l e s  and  w is  the co l l i s i on  e f f ic iency .  It has been  shown [2] tha t  the 
m e a n  va lue  is  co = 7 . 5 . 1 0  -2 fo r  m a g n e s i u m  v a p o r  combus t ion ;  the m e a n  speed  of gas m o l e c u l e s  a t  3000 ~ K 
is  about  105 c m / s e c ,  so the condensa t ion  r a t e  cons tan t  kip is 1.9 �9 103 c m / s e c .  

It is diff icul t  to e s t i m a t e  the n u c l e a t i o n  ra te  cons tan t ,  s ince  nothing has been  pub l i shed  on the ques t ion ;  
i t  has been  shown [4] that  the m a x i m u m  oxide p a r t i c l e  s i ze  p roduced  in  the gas by combus t ion  of a l u m i n u m  
and  b e r y l l i u m  drop le t s  is about  1 ~m.  We subs t i t u t e  this  va lue  of (Pro into (27) to get the nuc l ea t ion  r a t e  
cons t an t  k2P 2 as  5.9 �9 1012 Cl~ -~ �9 seC-lo The fol lowing va lues  w e r e  u s e d  in this  ca lcu la t ion :  v = 1, p = 5.1 �9 
10-6 m o l e / c m 3 ,  Pc = 3 . 6 . 1 0  -2 m o l e / c m  3, vt = 8 . 8 . 1 0  -4 c m 2 / s e c ,  pD = 7 �9 10 -5 m o l e / c m  �9  fl = 0.3. 

We subs t i t u t e  these  quan t i t i e s  into (15) and get tha t  p a r a m e t e r  5 wil l  be s m a l l  if r0 < 3.7 * 10 -~ cm or  

if the m e t a l  p a r t i c l e  d i a m e t e r  is  l e s s  than  740 #m.  

We s u b s t i t u t e  the n u m e r i c a l  va lues  into (25) to find ouat  the q u a s i s t a t i o n a r y  a p p r o x i m a t i o n  app l ies  to 
a b u r n i n g  me ta l  d rop le t  if r0 > 2 �9 10 -~ cm or  if  the d i a m e t e r  of the drople t  is l a r g e r  than 40 #m.  

We now c o n s i d e r  u n d e r  what  condi t ions  we can neg lec t  the r a t e  of consumpt ion  involved in  n u c l e a t i o n  
r e l a t i v e  to the c o n d e n s a t i o n  r a t e .  In the p r e s e n t  case  this  can be put  as  52>> 4~P3k2p2r02pc/3 pD, where  P is 
the r ad ius  of a n u c l e u s .  We s u b s t i t u t e  fo r  the n u m e r i c a l  v a l u e s  to get that  the a s s u m p t i o n  is  c o r r e c t  if 

# << 2 . 2 . 1 0  -5 cm or  0.22 Pro. 

The the condensed  c o m b u s t i o n  p roduc t s  fo rm in the vapor  in  a spec ia l  s ta te  in  the case  of s m a l l  me ta l  
d rop l e t s ,  as  the k ine t ic  r e s i s t a n c e  is l a r g e  by c o m p a r i s o n  with the di f fus ion one.  Condensa t ion  in  the gas 
ove r  the m e t a l  d rop le t  has l i t t l e  effect  on the c o m b u s t i o n  r a t e ;  the heat  needed  to e v a p o r a t e t h e  meta l  is  
produced directly at the droplet surface, and the combustion rateqimiting step is oxidant diffusion. 

All these results apply only when the Stefan flux is directed away from the surface of the droplet; to 
determine ~ and fi0 we need to consider the heat-balance equation for the droplet surface. 

We indebted to V. Bo Librovich for comments, discussion, and substantial assistance. 
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